Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir.

نویسندگان

  • Tomoki Imaoka
  • Hiroyuki Kusuhara
  • Masashi Adachi
  • John D Schuetz
  • Kenji Takeuchi
  • Yuichi Sugiyama
چکیده

Acyclic nucleotide phosphonates (adefovir, cidofovir, and tenofovir) are eliminated predominantly into the urine, and renal failure is their dose-limiting toxicity, particularly for adefovir and cidofovir. In this study, we examined the involvement of multidrug resistance-associated protein (MRP)4 (ABCC4) in their luminal efflux in the kidney. ATP-dependent uptake of adefovir and tenofovir but not cidofovir was observed only in the membrane vesicles expressing MRP4. The ATP-dependent uptake of adefovir and tenofovir by MRP4 was not saturated at 1 mM. The ATP-dependent uptake of adefovir by membrane vesicles expressing MRP4 was osmotic-sensitive. No ATP-dependent uptake of either agent was observed in the membrane vesicles expressing human MRP2 or breast cancer resistance protein. These nucleotide analogs were given to mice by constant intravenous infusion, and the plasma, urine, and tissue concentrations were determined. The kidney accumulation of adefovir and tenofovir was significantly greater in Mrp4 knockout mice (130 versus 66 and 191 versus 87 pmol/g tissue, respectively); thus, the renal luminal efflux clearance was estimated to be 37 and 46%, respectively, of the control. There was no difference in the fraction of mono- and diphosphorylated forms of adefovir in the kidney between wild-type and Mrp4 knockout mice. In mice, cidofovir was also eliminated via the urine by tubular secretion as well as glomerular filtration. There was no change in the kinetic parameters of cidofovir in Mrp4 knockout mice. Our results suggest that MRP4 is involved in the luminal efflux of both adefovir and tenofovir, but it makes only a limited contribution to the urinary excretion of cidofovir.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The human multidrug resistance protein 4 (MRP4, ABCC4): functional analysis of a highly polymorphic gene.

ABCC4 encodes multidrug resistance protein 4 (MRP4), a member of the ATP-binding cassette family of membrane transporters involved in the efflux of endogenous and xenobiotic molecules. The aims of this study were to identify single nucleotide polymorphisms of ABCC4 and to functionally characterize selected nonsynonymous variants. Resequencing was performed in a large ethnically diverse populati...

متن کامل

Human immunodeficiency virus protease inhibitors interact with ATP binding cassette transporter 4/multidrug resistance protein 4: a basis for unanticipated enhanced cytotoxicity.

Human immunodeficiency virus (HIV) pharmacotherapy, by combining different drug classes such as nucleoside analogs and HIV protease inhibitors (PIs), has increased HIV-patient life expectancy. Consequently, among these patients, an increase in non-HIV-associated cancers has produced a patient cohort requiring both HIV and cancer chemotherapy. We hypothesized that multidrug resistance protein 4/...

متن کامل

Evaluation of the role of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in the urinary excretion of sulfate and glucuronide metabolites of edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-5-one).

Edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the treatment of acute cerebral infarction. Edaravone is mainly excreted into the urine after conjugation to glucuronide or sulfate. Previous studies have demonstrated that edaravone sulfate is a good substrate of human organic anion transporter (OAT) 1 (SLC22A6) and human OAT3 (SLC22A8). In this stu...

متن کامل

A Novel Pathway for Arsenic Elimination: Human Multidrug Resistance Protein 4 (MRP4/ABCC4) Mediates Cellular Export

Hundreds of millions of people worldwide are exposed to unacceptable levels of arsenic in drinking water. This is a public health crisis because arsenic is a Group I (proven) human carcinogen. Human cells methylate arsenic to monomethylarsonous acid (MMA), monomethylarsonic acid (MMA), dimethylarsinous acid (DMA), and dimethylarsinic acid (DMA). Although the liver is the predominant site for ar...

متن کامل

The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4.

Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 71 2  شماره 

صفحات  -

تاریخ انتشار 2007